Quasi maximum likelihood estimation and prediction in the compound Poisson ECOGARCH(1,1) model
نویسندگان
چکیده
This paper deals with the problem of estimation and prediction in a compound Poisson ECOGARCH(1, 1) model. For this we construct a quasi maximum likelihood estimator under the assumption that all jumps of the log-price process are observable. Since these jumps occur at unequally spaced time points, it is clear that the estimator has to be computed for irregularly spaced data. Assuming normally distributed jumps and a recursion to estimate the volatility allows to define and compute a quasi-likelihood function, which is maximised numerically. The small sample behaviour of the estimator is analysed in a small simulation study. Based on the recursion for the volatility process a one-step ahead prediction of the volatility is defined as well as a prediction interval for the log-price process. Finally the model is fitted to tick-by-tick data of the New York Stock Exchange. (JEL: C32, C51, C53)
منابع مشابه
Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملPoisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods
This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predict...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کاملEstimation of Parameters of the Power-Law-Non-Homogenous Poisson Process in the Case of Exact Failures Data
This expository article shows how the maximum likelihood estimation method and the Newton-Raphson algorithm can be used to estimate the parameters of the power-law Poisson process model used to analyze data from repairable systems .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008